eISSN: 1643-3750


Get your full text copy in PDF

Curcumol Promotes Vascular Endothelial Growth Factor (VEGF)-Mediated Diabetic Wound Healing in Streptozotocin-Induced Hyperglycemic Rats

Jie Zhou, Maowei Ni, Xia Liu, Zeming Ren, Zhiguo Zheng

(Development and Research Center of Official Silkworm Resources, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland))

Med Sci Monit 2017; 23:555-562

DOI: 10.12659/MSM.902859

BACKGROUND: Wound healing in chronic diabetic mellitus is mainly associated with the management of angiogenesis. The angiogenic mechanism of vascular endothelial growth factor (VEGF) has been widely studied in the context of diabetic ulcers. The aim of this study was to investigate the wound-healing potential of curcumol in streptozotocin-induced diabetic rats.
MATERIAL AND METHODS: Sixty male SD (Sprague Dawley) rats were purchased and randomly assigned into four groups: a control group and a model group treated with blank ointment, a high-dose curcumol group, and a low-dose curcumol group. The number of animals in each group was 15. Diabetes was induced by an intraperitoneal injection of streptozotocin. Two cutaneous wounds were incised at the dorsal region of all the experimental animals. Wound healing was assessed for all animal groups by observing the rate of wound closure. The expression of VEGF at the wound sites was studied by immunohistochemical staining to evaluate the vascular endothelial cell reaction. VEGF protein and related mRNA levels were analyzed by Western blotting and RT-PCR (reverse transcription-polymerase chain reaction).
RESULTS: Curcumol treatment significantly increased the rates of wound closure in treated animals, and hence wound healing was drastically enhanced for treatment groups compared to control groups. Histological observations and related mRNA and protein levels showed a higher VEGF expression in the treatment groups.
CONCLUSIONS: Our analyses clearly suggested that the observed enhancement in wound healing as a result of curcumol administration was attributable to VEGF-mediated angiogenesis.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree